A dynamic system model-based technique for functional MRI data analysis.

نویسندگان

  • Masayuki Kamba
  • Yul-Wan Sung
  • Seiji Ogawa
چکیده

Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200-210 mm, matrix size of 64 x 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2-8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734-1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...

متن کامل

Measuring a Dynamic Efficiency Based on MONLP Model under DEA Control

Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. ‎‎Standard DEA models are ‎‎quite limited models‎, ‎in the sense that they do not consider a DMU ‎‎at different times‎. ‎To resolve this problem‎, ‎DEA models with dynamic ‎‎structures have been proposed‎.‎In a recent pape...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2004